
C++ - Module 00

Namespaces, classes, member functions, stdio streams,
initialization lists, static, const, and some other basic

stuff

Summary:
This document contains the exercises of Module 00 from C++ modules.

Version: 11.1

Contents
I Introduction 2

II General rules 3

III AI Instructions 6

IV Exercise 00: Megaphone 8

V Exercise 01: My Awesome PhoneBook 9

VI Exercise 02: The Job Of Your Dreams 11

VII Submission and peer-evaluation 13

1

Chapter I

Introduction

C++ is a general-purpose programming language created by Bjarne Stroustrup as an ex-
tension of the C programming language, or "C with Classes" (source: Wikipedia).

The goal of these modules is to introduce you to Object-Oriented Programming.
This will be the starting point of your C++ journey. Many languages are recommended
for learning OOP. We decided to choose C++ since it’s derived from your old friend C.
Since C++ is a complex language, and in order to keep things simple, your code will
follow the C++98 standard.

We are aware modern C++ is way different in a lot of aspects. So if you want to
become a proficient C++ developer, it’s up to you to go further after the 42 Common
Core!

You will discover new concepts step-by-step. The exercises will progressively increase
in complexity.

2

https://en.wikipedia.org/wiki/C++

Chapter II

General rules

Compiling

• Compile your code with c++ and the flags -Wall -Wextra -Werror

• Your code should still compile if you add the flag -std=c++98

Formatting and naming conventions

• The exercise directories will be named this way: ex00, ex01, ... , exn

• Name your files, classes, functions, member functions and attributes as required in
the guidelines.

• Write class names in UpperCamelCase format. Files containing class code will
always be named according to the class name. For instance:
ClassName.hpp/ClassName.h, ClassName.cpp, or ClassName.tpp. Then, if you
have a header file containing the definition of a class "BrickWall" standing for a
brick wall, its name will be BrickWall.hpp.

• Unless specified otherwise, every output message must end with a newline character
and be displayed to the standard output.

• Goodbye Norminette! No coding style is enforced in the C++ modules. You can
follow your favorite one. But keep in mind that code your peer evaluators can’t
understand is code they can’t grade. Do your best to write clean and readable code.

Allowed/Forbidden

You are not coding in C anymore. Time to C++! Therefore:

• You are allowed to use almost everything from the standard library. Thus, instead
of sticking to what you already know, it would be smart to use the C++-ish versions
of the C functions you are used to as much as possible.

• However, you can’t use any other external library. It means C++11 (and derived
forms) and Boost libraries are forbidden. The following functions are forbidden
too: *printf(), *alloc() and free(). If you use them, your grade will be 0 and
that’s it.

3

C++ - Module 00
Namespaces, classes, member functions, stdio streams,

initialization lists, static, const, and some other basic stuff

• Note that unless explicitly stated otherwise, the using namespace <ns_name> and
friend keywords are forbidden. Otherwise, your grade will be -42.

• You are allowed to use the STL only in Modules 08 and 09. That means:
no Containers (vector/list/map, and so forth) and no Algorithms (anything that
requires including the <algorithm> header) until then. Otherwise, your grade will
be -42.

A few design requirements

• Memory leakage occurs in C++ too. When you allocate memory (by using the new
keyword), you must avoid memory leaks.

• From Module 02 to Module 09, your classes must be designed in the Orthodox
Canonical Form, except when explicitly stated otherwise.

• Any function implementation put in a header file (except for function templates)
means 0 to the exercise.

• You should be able to use each of your headers independently from others. Thus,
they must include all the dependencies they need. However, you must avoid the
problem of double inclusion by adding include guards. Otherwise, your grade will
be 0.

Read me

• You can add some additional files if you need to (i.e., to split your code). As these
assignments are not verified by a program, feel free to do so as long as you turn in
the mandatory files.

• Sometimes, the guidelines of an exercise look short but the examples can show
requirements that are not explicitly written in the instructions.

• Read each module completely before starting! Really, do it.

• By Odin, by Thor! Use your brain!!!

Regarding the Makefile for C++ projects, the same rules as in C apply
(see the Norm chapter about the Makefile).

You will have to implement a lot of classes. This can seem tedious,
unless you’re able to script your favorite text editor.

4

C++ - Module 00
Namespaces, classes, member functions, stdio streams,

initialization lists, static, const, and some other basic stuff

You are given a certain amount of freedom to complete the exercises.
However, follow the mandatory rules and don’t be lazy. You would
miss a lot of useful information! Do not hesitate to read about
theoretical concepts.

5

Chapter III

AI Instructions

● Context
This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices
and countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

6

C++ - Module 00
Namespaces, classes, member functions, stdio streams,

initialization lists, static, const, and some other basic stuff

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your projects. But you’re here to

learn, not to prove that AI has learned. Don’t waste your time (or ours) just to
demonstrate that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. AI gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones,
etc. You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own AI software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

✓ Good practice:

I’m stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

✗ Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I’m stuck again. I fail.

7

Chapter IV

Exercise 00: Megaphone

Exercise: 00

Megaphone
Directory: ex00/

Files to Submit: Makefile, megaphone.cpp
Forbidden: None

Just to make sure that everybody is awake, write a program that produces the fol-
lowing output:

$>./megaphone "shhhhh... I think the students are asleep..."
SHHHHH... I THINK THE STUDENTS ARE ASLEEP...
$>./megaphone Damnit " ! " "Sorry students, I thought this thing was off."
DAMNIT ! SORRY STUDENTS, I THOUGHT THIS THING WAS OFF.
$>./megaphone
* LOUD AND UNBEARABLE FEEDBACK NOISE *
$>

Solve the exercises in a C++ manner.

8

Chapter V

Exercise 01: My Awesome
PhoneBook

Exercise: 01

My Awesome PhoneBook
Directory: ex01/

Files to Submit: Makefile, *.cpp, *.{h, hpp}
Forbidden: None

Welcome to the 80s and their unbelievable technology! Write a program that behaves
like a crappy awesome phonebook software.

You have to implement two classes:
• PhoneBook

◦ It has an array of contacts.

◦ It can store a maximum of 8 contacts. If the user tries to add a 9th contact,
replace the oldest one by the new one.

◦ Please note that dynamic allocation is forbidden.

• Contact

◦ Stands for a phonebook contact.

In your code, the phonebook must be instantiated as an instance of the PhoneBook
class. Same thing for the contacts. Each one of them must be instantiated as an instance
of the Contact class. You’re free to design the classes as you like but keep in mind that
anything that will always be used inside a class is private, and that anything that can be
used outside a class is public.

Don’t forget to watch the intranet videos.

9

C++ - Module 00
Namespaces, classes, member functions, stdio streams,

initialization lists, static, const, and some other basic stuff

At program start-up, the phonebook is empty and the user is prompted to enter one
of three commands. The program only accepts ADD, SEARCH and EXIT.

• ADD: save a new contact

◦ If the user enters this command, they are prompted to input the information
of the new contact one field at a time. Once all the fields have been completed,
add the contact to the phonebook.

◦ The contact fields are: first name, last name, nickname, phone number, and
darkest secret. A saved contact can’t have empty fields.

• SEARCH: display a specific contact

◦ Display the saved contacts as a list of 4 columns: index, first name, last
name and nickname.

◦ Each column must be 10 characters wide. A pipe character (’|’) separates
them. The text must be right-aligned. If the text is longer than the column,
it must be truncated and the last displayable character must be replaced by a
dot (’.’).

◦ Then, prompt the user again for the index of the entry to display. If the index
is out of range or wrong, define a relevant behavior. Otherwise, display the
contact information, one field per line.

• EXIT

◦ The program quits and the contacts are lost forever!

• Any other input is ignored.

Once a command has been correctly executed, the program waits for another one. It
stops when the user inputs EXIT.

Give a relevant name to your executable.

http://www.cplusplus.com/reference/string/string/ and of course
http://www.cplusplus.com/reference/iomanip/

10

http://www.cplusplus.com/reference/string/string/
http://www.cplusplus.com/reference/iomanip/

Chapter VI

Exercise 02: The Job Of Your
Dreams

Exercise: 02

The Job Of Your Dreams
Directory: ex02/

Files to Submit: Makefile, Account.cpp, Account.hpp, tests.cpp
Forbidden: None

Account.hpp, tests.cpp, and the log file are available for download
on the module’s intranet page.

Today is your first day at GlobalBanksters United. After successfully passing the re-
cruitment tests (thanks to a few Microsoft Office tricks a friend showed you), you joined
the dev team. You also know the recruiter was amazed by how quickly you installed
Adobe Reader. That little extra made all the difference and helped you defeat all your
opponents (aka the other applicants): you made it!

Anyway, your manager just gave you some work to do. Your first task is to recreate a
lost file. Something went wrong and a source file was deleted by mistake. Unfortunately,
your colleagues don’t know what Git is and use USB keys to share code. At this point, it
would make sense to leave this place right now. However, you decide to stay. Challenge
accepted!

Your fellow developers give you a bunch of files. Compiling tests.cpp reveals that
the missing file is Account.cpp. Lucky you, the header file Account.hpp was saved.
There is also a log file. Maybe you could use it in order to understand how the Account
class was implemented.

11

C++ - Module 00
Namespaces, classes, member functions, stdio streams,

initialization lists, static, const, and some other basic stuff

You start to recreate the Account.cpp file. In only a few minutes, you code a few
lines of pure awesome C++. After a couple of failed compilations, your program passes
the tests. Its output matches perfectly the one saved in the log file (except for the
timestamps which will obviously differ since the tests saved in the log file were run
before you were hired).

Damn, you’re impressive!

The order in which the destructors are called may differ depending on
your compiler/operating system. So your destructors may be called in
a reverse order.

Completing exercise 02 is not mandatory to pass this module.

12

Chapter VII

Submission and peer-evaluation

Submit your assignment to your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.
You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

13

	Introduction
	General rules
	AI Instructions
	Exercise 00: Megaphone
	Exercise 01: My Awesome PhoneBook
	Exercise 02: The Job Of Your Dreams
	Submission and peer-evaluation

