
C++ - Module 02

Ad-hoc polymorphism, operator overloading
and the Orthodox Canonical class form

Summary: This document contains the exercises of Module 02 from the C++ modules.

Version: 9.1

Contents
I Introduction 2

II General rules 3

III New rules 6

IV AI Instructions 7

V Exercise 00: My First Class in Orthodox Canonical Form 9

VI Exercise 01: Towards a more useful fixed-point number class 11

VII Exercise 02: Now we’re talking 13

VIII Exercise 03: BSP 15

IX Submission and Peer-Evaluation 17

1

Chapter I

Introduction

C++ is a general-purpose programming language created by Bjarne Stroustrup as an ex-
tension of the C programming language, or "C with Classes" (source: Wikipedia).

The goal of these modules is to introduce you to Object-Oriented Programming.
This will be the starting point of your C++ journey. Many languages are recommended
for learning OOP, but we decided to choose C++ since it’s derived from your old friend
C. Because this is a complex language, and in order to keep things simple, your code will
comply with the C++98 standard.

We are aware that modern C++ is quite different in many aspects. So, if you want to
become a proficient C++ developer, it is up to you to go further after the 42 Common
Core!

2

https://en.wikipedia.org/wiki/C++

Chapter II

General rules

Compiling

• Compile your code with c++ and the flags -Wall -Wextra -Werror

• Your code should still compile if you add the flag -std=c++98

Formatting and naming conventions

• The exercise directories will be named this way: ex00, ex01, ... , exn

• Name your files, classes, functions, member functions and attributes as required in
the guidelines.

• Write class names in UpperCamelCase format. Files containing class code will
always be named according to the class name. For instance:
ClassName.hpp/ClassName.h, ClassName.cpp, or ClassName.tpp. Then, if you
have a header file containing the definition of a class "BrickWall" standing for a
brick wall, its name will be BrickWall.hpp.

• Unless specified otherwise, every output message must end with a newline character
and be displayed to the standard output.

• Goodbye Norminette! No coding style is enforced in the C++ modules. You can
follow your favorite one. But keep in mind that code your peer evaluators can’t
understand is code they can’t grade. Do your best to write clean and readable code.

Allowed/Forbidden

You are not coding in C anymore. Time to C++! Therefore:

• You are allowed to use almost everything from the standard library. Thus, instead
of sticking to what you already know, it would be smart to use the C++-ish versions
of the C functions you are used to as much as possible.

• However, you can’t use any other external library. It means C++11 (and derived
forms) and Boost libraries are forbidden. The following functions are forbidden
too: *printf(), *alloc() and free(). If you use them, your grade will be 0 and
that’s it.

3

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

• Note that unless explicitly stated otherwise, the using namespace <ns_name> and
friend keywords are forbidden. Otherwise, your grade will be -42.

• You are allowed to use the STL only in Modules 08 and 09. That means:
no Containers (vector/list/map, and so forth) and no Algorithms (anything that
requires including the <algorithm> header) until then. Otherwise, your grade will
be -42.

A few design requirements

• Memory leakage occurs in C++ too. When you allocate memory (by using the new
keyword), you must avoid memory leaks.

• From Module 02 to Module 09, your classes must be designed in the Orthodox
Canonical Form, except when explicitly stated otherwise.

• Any function implementation put in a header file (except for function templates)
means 0 to the exercise.

• You should be able to use each of your headers independently from others. Thus,
they must include all the dependencies they need. However, you must avoid the
problem of double inclusion by adding include guards. Otherwise, your grade will
be 0.

Read me

• You can add some additional files if you need to (i.e., to split your code). As these
assignments are not verified by a program, feel free to do so as long as you turn in
the mandatory files.

• Sometimes, the guidelines of an exercise look short but the examples can show
requirements that are not explicitly written in the instructions.

• Read each module completely before starting! Really, do it.

• By Odin, by Thor! Use your brain!!!

Regarding the Makefile for C++ projects, the same rules as in C apply
(see the Norm chapter about the Makefile).

You will have to implement a lot of classes. This can seem tedious,
unless you’re able to script your favorite text editor.

4

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

You are given a certain amount of freedom to complete the exercises.
However, follow the mandatory rules and don’t be lazy. You would
miss a lot of useful information! Do not hesitate to read about
theoretical concepts.

5

Chapter III

New rules

From now on, all your classes must be designed in the Orthodox Canonical Form,
unless explicitly stated otherwise. They will then implement the four required member
functions below:

• Default constructor

• Copy constructor

• Copy assignment operator

• Destructor

Split your class code into two files. The header file (.hpp/.h) contains the class
definition, whereas the source file (.cpp) contains the implementation.

6

Chapter IV

AI Instructions

● Context
This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices
and countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

7

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your projects. But you’re here to

learn, not to prove that AI has learned. Don’t waste your time (or ours) just to
demonstrate that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. AI gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones,
etc. You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own AI software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

✓ Good practice:

I’m stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

✗ Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I’m stuck again. I fail.

8

Chapter V

Exercise 00: My First Class in
Orthodox Canonical Form

Exercise: 00

My First Class in Orthodox Canonical Form
Directory: ex00/

Files to Submit: Makefile, main.cpp, Fixed.{h, hpp}, Fixed.cpp
Forbidden: None

You think you know integers and floating-point numbers. How cute.

Please read this 3 pages article (1, 2, 3) to discover that you don’t. Go on, read it.

Until today, every number you used in your code was basically either an integer or a
floating-point number, or any of their variants (short, char, long, double, and so forth).
After reading the article above, it’s safe to assume that integers and floating-point num-
bers have opposite characteristics.

But today, things will change. You are going to discover a new and awesome number
type: fixed-point numbers! Forever missing from the scalar types of most languages,
fixed-point numbers offer a valuable balance between performance, accuracy, range and
precision. That explains why fixed-point numbers are particularly applicable to computer
graphics, sound processing or scientific programming, just to name a few.

As C++ lacks fixed-point numbers, you’re going to add them. This article from
Berkeley is a good start. If you have no idea what Berkeley University is, read this
section of its Wikipedia page.

9

http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point.html
http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_representation.html
http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_printing.html
https://web.archive.org/web/20231224143018/https://inst.eecs.berkeley.edu/~cs61c/sp06/handout/fixedpt.html
http://en.wikipedia.org/wiki/University_of_California,_Berkeley#Notable_alumni.2C_faculty.2C_and_staff
http://en.wikipedia.org/wiki/University_of_California,_Berkeley#Notable_alumni.2C_faculty.2C_and_staff

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

Create a class in Orthodox Canonical Form that represents a fixed-point number:

• Private members:

◦ An integer to store the fixed-point number value.
◦ A static constant integer to store the number of fractional bits. Its value

will always be the integer literal 8.

• Public members:

◦ A default constructor that initializes the fixed-point number value to 0.
◦ A copy constructor.
◦ A copy assignment operator overload.
◦ A destructor.
◦ A member function int getRawBits(void) const;

that returns the raw value of the fixed-point value.
◦ A member function void setRawBits(int const raw);

that sets the raw value of the fixed-point number.

Running this code:
#include <iostream>

int main(void) {

Fixed a;
Fixed b(a);
Fixed c;

c = b;

std::cout << a.getRawBits() << std::endl;
std::cout << b.getRawBits() << std::endl;
std::cout << c.getRawBits() << std::endl;

return 0;
}

Should output something similar to:
$> ./a.out
Default constructor called
Copy constructor called
Copy assignment operator called // <-- This line may be missing depending on your implementation
getRawBits member function called
Default constructor called
Copy assignment operator called
getRawBits member function called
getRawBits member function called
0
getRawBits member function called
0
getRawBits member function called
0
Destructor called
Destructor called
Destructor called
$>

10

Chapter VI

Exercise 01: Towards a more useful
fixed-point number class

Exercise01

Towards a more useful fixed-point number class
Directory: ex01/

Files to Submit: Makefile, main.cpp, Fixed.{h, hpp}, Fixed.cpp
Authorized: roundf (from <cmath>)

The previous exercise was a good start, but our class is pretty useless. It can only
represent the value 0.0.

Add the following public constructors and public member functions to your class:

• A constructor that takes a constant integer as a parameter.
It converts it to the corresponding fixed-point value. The fractional bits value
should be initialized to 8, like in exercise 00.

• A constructor that takes a constant floating-point number as a parameter.
It converts it to the corresponding fixed-point value. The fractional bits value
should be initialized to 8, like in exercise 00.

• A member function float toFloat(void) const;
that converts the fixed-point value to a floating-point value.

• A member function int toInt(void) const;
that converts the fixed-point value to an integer value.

And add the following function to the Fixed class files:

• An overload of the insertion («) operator that inserts a floating-point representation
of the fixed-point number into the output stream object passed as a parameter.

11

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

Running this code:

#include <iostream>

int main(void) {

Fixed a;
Fixed const b(10);
Fixed const c(42.42f);
Fixed const d(b);

a = Fixed(1234.4321f);

std::cout << "a is " << a << std::endl;
std::cout << "b is " << b << std::endl;
std::cout << "c is " << c << std::endl;
std::cout << "d is " << d << std::endl;

std::cout << "a is " << a.toInt() << " as integer" << std::endl;
std::cout << "b is " << b.toInt() << " as integer" << std::endl;
std::cout << "c is " << c.toInt() << " as integer" << std::endl;
std::cout << "d is " << d.toInt() << " as integer" << std::endl;

return 0;
}

Should output something similar to:
$> ./a.out
Default constructor called
Int constructor called
Float constructor called
Copy constructor called
Copy assignment operator called
Float constructor called
Copy assignment operator called
Destructor called
a is 1234.43
b is 10
c is 42.4219
d is 10
a is 1234 as integer
b is 10 as integer
c is 42 as integer
d is 10 as integer
Destructor called
Destructor called
Destructor called
Destructor called
$>

12

Chapter VII

Exercise 02: Now we’re talking

Exercise02

Now we’re talking
Directory: ex02/

Files to Submit: Makefile, main.cpp, Fixed.{h, hpp}, Fixed.cpp
Authorized: roundf (from <cmath>)

Add public member functions to your class to overload the following operators:

• The 6 comparison operators: >, <, >=, <=, ==, and !=.

• The 4 arithmetic operators: +, -, *, and /.

• The 4 increment/decrement (pre-increment and post-increment, pre-decrement and
post-decrement) operators, which will increase or decrease the fixed-point value by
the smallest representable ϵ, such that 1 + ϵ > 1.

Add these four public overloaded member functions to your class:

• A static member function min that takes two references to fixed-point numbers as
parameters, and returns a reference to the smallest one.

• A static member function min that takes two references to constant fixed-point
numbers as parameters, and returns a reference to the smallest one.

• A static member function max that takes two references to fixed-point numbers as
parameters, and returns a reference to the greatest one.

• A static member function max that takes two references to constant fixed-point
numbers as parameters, and returns a reference to the greatest one.

13

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

It’s up to you to test every feature of your class. However, running the code below:

#include <iostream>

int main(void) {

Fixed a;
Fixed const b(Fixed(5.05f) * Fixed(2));

std::cout << a << std::endl;
std::cout << ++a << std::endl;
std::cout << a << std::endl;
std::cout << a++ << std::endl;
std::cout << a << std::endl;

std::cout << b << std::endl;

std::cout << Fixed::max(a, b) << std::endl;

return 0;
}

Should output something like (for greater readability, the constructor/destructor mes-
sages are removed in the example below):

$> ./a.out
0
0.00390625
0.00390625
0.00390625
0.0078125
10.1016
10.1016
$>

If you ever do a division by 0, it is acceptable that the program
crashes

14

Chapter VIII

Exercise 03: BSP

Exercise03

BSP
Directory: ex03/

Files to Submit: Makefile, main.cpp, Fixed.{h, hpp}, Fixed.cpp,
Point.{h, hpp}, Point.cpp, bsp.cpp
Authorized: roundf (from <cmath>)

Now that you have a functional Fixed class, it would be nice to use it.

Implement a function that indicates whether a point is inside a triangle or not. Very
useful, isn’t it?

BSP stands for Binary Space Partitioning. You are welcome. :)

You can pass this module without completing exercise 03.

15

C++ - Module 02
Ad-hoc polymorphism, operator overloading

and the Orthodox Canonical class form

Let’s start by creating the Point class in Orthodox Canonical Form that represents
a 2D point:

• Private members:

◦ A Fixed const attribute x.

◦ A Fixed const attribute y.

◦ Anything else useful.

• Public members:

◦ A default constructor that initializes x and y to 0.

◦ A constructor that takes two constant floating-point numbers as parameters.
It initializes x and y with those parameters.

◦ A copy constructor.

◦ A copy assignment operator overload.

◦ A destructor.

◦ Anything else useful.

To conclude, implement the following function in the appropriate file:

bool bsp(Point const a, Point const b, Point const c, Point const point);

• a, b, c: The vertices of our beloved triangle.

• point: The point to check.

• Returns: True if the point is inside the triangle. False otherwise.
Thus, if the point is a vertex or on an edge, it will return False.

Implement and turn in your own tests to ensure that your class behaves as expected.

16

Chapter IX

Submission and Peer-Evaluation

Turn in your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double-check the names of
your folders and files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.
You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

17

	Introduction
	General rules
	New rules
	AI Instructions
	Exercise 00: My First Class in Orthodox Canonical Form
	Exercise 01: Towards a more useful fixed-point number class
	Exercise 02: Now we're talking
	Exercise 03: BSP
	Submission and Peer-Evaluation

