C+—+ - Module 03

Inheritance

Summary:
This document contains the exercises of Module 03 from C++ modules.

Version: 8.1




Contents

11

111

v

VI

VII

VIII

Introduction

General rules

AT Instructions

Exercise 00: Aaaaand... OPEN!
Exercise 01: Serena, my love!
Exercise 02: Repetitive work
Exercise 03: Now it’s weird!

Submission and Peer-Evaluation

10

11

12

14




Chapter 1

Introduction

C++ is a general-purpose programming language created by Bjarne Stroustrup as an ex-
tension of the C programming language, or "C with Classes" (source: Wikipedia).

The goal of these modules is to introduce you to Object-Oriented Programming.
This will be the starting point of your C++ journey. Many languages are recommended
to learn OOP, but we decided to choose C++ since it’s derived from your old friend C.
Because this is a complex language, and in order to keep things simple, your code will
comply with the C+498 standard.

We are aware that modern C++ is very different in many aspects. So, if you want
to become a proficient C++ developer, it’s up to you to go further after the 42 Common
Core!



https://en.wikipedia.org/wiki/C++

Chapter 11

General rules

Compiling
e Compile your code with c++ and the flags -Wall -Wextra -Werror

e Your code should still compile if you add the flag —std=c++98
Formatting and naming conventions

e The exercise directories will be named this way: ex00, ex01, ... , exn

e Name your files, classes, functions, member functions and attributes as required in
the guidelines.

o Write class names in UpperCamelCase format. Files containing class code will
always be named according to the class name. For instance:
ClassName.hpp/ClassName.h, ClassName.cpp, or ClassName.tpp. Then, if you
have a header file containing the definition of a class "BrickWall" standing for a
brick wall, its name will be BrickWall.hpp.

e Unless specified otherwise, every output message must end with a newline character
and be displayed to the standard output.

e Goodbye Norminette! No coding style is enforced in the C++ modules. You can
follow your favorite one. But keep in mind that code your peer evaluators can’t
understand is code they can’t grade. Do your best to write clean and readable code.

Allowed /Forbidden

You are not coding in C anymore. Time to C++! Therefore:

e You are allowed to use almost everything from the standard library. Thus, instead
of sticking to what you already know, it would be smart to use the C++-ish versions
of the C functions you are used to as much as possible.

e However, you can’t use any other external library. It means C++11 (and derived
forms) and Boost libraries are forbidden. The following functions are forbidden
too: *printf (), *alloc() and free(). If you use them, your grade will be 0 and
that’s it.




C++ - Module 03 Inheritance

e Note that unless explicitly stated otherwise, the using namespace <ns_name> and
friend keywords are forbidden. Otherwise, your grade will be -42.

¢ You are allowed to use the STL only in Modules 08 and 09. That means:
no Containers (vector/list/map, and so forth) and no Algorithms (anything that

requires including the <algorithm> header) until then. Otherwise, your grade will
be -42.

A few design requirements

e Memory leakage occurs in C++ too. When you allocate memory (by using the new
keyword), you must avoid memory leaks.

e From Module 02 to Module 09, your classes must be designed in the Orthodox
Canonical Form, except when explicitly stated otherwise.

e Any function implementation put in a header file (except for function templates)
means 0 to the exercise.

e You should be able to use each of your headers independently from others. Thus,
they must include all the dependencies they need. However, you must avoid the
problem of double inclusion by adding include guards. Otherwise, your grade will
be 0.

Read me

e You can add some additional files if you need to (i.e., to split your code). As these
assignments are not verified by a program, feel free to do so as long as you turn in
the mandatory files.

e Sometimes, the guidelines of an exercise look short but the examples can show
requirements that are not explicitly written in the instructions.

e Read each module completely before starting! Really, do it.

e By Odin, by Thor! Use your brain!!!

Regarding the Makefile for C++ projects, the same rules as in C apply

(see the Norm chapter about the Makefile).

You will have to implement a lot of classes. This can seem tedious,

EE? unless you’re able to script your favorite text editor.




C++ - Module 03 Inheritance

You are given a certain amount of freedom to complete the exercises.
However, follow the mandatory rules and don’t be lazy. You would

miss a lot of useful information! Do not hesitate to read about

theoretical concepts.




Chapter 111

Al Instructions

Context

This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using Al tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on Al — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

Main message

Build strong foundations without shortcuts.

Really develop tech & power skills.

Experience real peer-learning, start learning how to learn and solve new problems.
The learning journey is more important than the result.

Learn about the risks associated with Al, and develop effective control practices
and countermeasures to avoid common pitfalls.

Learner rules:

e You should apply reasoning to your assigned tasks, especially before turning to Al.




C++ - Module 03 Inheritance

You should not ask for direct answers to the Al

You should learn about 42 global approach on Al.

Phase outcomes:

Within this foundational phase, you will get the following outcomes:

Get proper tech and coding foundations.

Know why and how AI can be dangerous during this phase.

Comments and example:

Yes, we know Al exists — and yes, it can solve your projects. But you're here to
learn, not to prove that Al has learned. Don’t waste your time (or ours) just to
demonstrate that Al can solve the given problem.

Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. Al gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

Keep in mind that during exams, Al is not available — no internet, no smartphones,
etc. You’ll quickly realise if you've relied too heavily on Al in your learning process.

Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

Yes, Al will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own Al software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

v Good practice:

I'm stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

X Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I'm stuck again. I fail.




Chapter 1V

Exercise 00: Aaaaand... OPEN!

I Exercise: 00
"

Aaaaand... OPEN!

Directory: exz00/

Files to Submit: Makefile, main.cpp, ClapTrap.{h, hpp}, ClapTrap.cpp
Forbidden: None

First, you have to implement a class! How original!

It will be called ClapTrap and will have the following private attributes initialized
to the values specified in brackets:

e Name, which is passed as a parameter to the constructor
e Hit points (10), representing the health of the ClapTrap
e Energy points (10)
e Attack damage (0)

Add the following public member functions so that the ClapTrap behaves more real-
istically:

e void attack(const std::string& target);
e void takeDamage(unsigned int amount);

e void beRepaired(unsigned int amount);

When ClapTrap attacks, it causes its target to lose <attack damage> hit points.
When ClapTrap repairs itself, it regains <amount> hit points. Attacking and repairing
each cost 1 energy point. Of course, ClapTrap can’t do anything if it has no hit points or
energy points left. However, since these exercises serve as an introduction, the ClapTrap
instances should not interact directly with one another, and the parameters will not refer
to another instance of ClapTrap.




C++ - Module 03 Inheritance

In all of these member functions, you need to print a message to describe what hap-
pens. For example, the attack() function may display something like (of course, without
the angle brackets):

ClapTrap <name> attacks <target>, causing <damage> points of damage!

The constructors and destructor must also display a message, so your peer-evaluators
can easily see that they have been called.

Implement and turn in your own tests to ensure your code works as expected.




Chapter V

Exercise 01: Serena, my love!

l Exercise: 01

Serena, my love!

Directory: ex01/

Files to Submit: Files from the previous exercise + ScavTrap.{h, hpp},
ScavTrap.cpp

Forbidden: None

Because you can never have enough ClapTraps, you will now create a derived robot.
It will be named ScavTrap and will inherit the constructors and destructor from Clap-
Trap. However, its constructors, destructor, and attack() will print different messages.
After all, ClapTraps are aware of their individuality.

Note that proper construction/destruction chaining must be shown in your tests.
When a ScavTrap is created, the program starts by constructing a ClapTrap. Destruc-
tion occurs in reverse order. Why?

ScavTrap will use the attributes of ClapTrap (update ClapTrap accordingly) and
must initialize them to:

e Name, which is passed as a parameter to the constructor
e Hit points (100), representing the health of the ClapTrap
e Energy points (50)

e Attack damage (20)

ScavTrap will also have its own special ability:

void guardGate();

This member function will display a message indicating that ScavTrap is now in Gate
keeper mode.

Don’t forget to add more tests to your program.

10




Chapter VI

Exercise 02: Repetitive work

l Exercise: 02

Repetitive work

Directory: ex02/

Files to Submit: Files from previous exercises + FragTrap.{h, hpp},
FragTrap.cpp

Forbidden: None

Making ClapTraps is probably starting to get on your nerves.

Now, implement a FragTrap class that inherits from ClapTrap. It is very similar to
ScavTrap. However, its construction and destruction messages must be different. Proper
construction/destruction chaining must be shown in your tests. When a FragTrap is cre-
ated, the program starts by constructing a ClapTrap. Destruction occurs in reverse order.

Same goes for the attributes, but with different values this time:

e Name, which is passed as a parameter to the constructor

e Hit points (100), representing the health of the ClapTrap
e Energy points (100)
e Attack damage (30)

FragTrap has a special ability too:

void highFivesGuys(void) ;

This member function displays a positive high-fives request on the standard output.

Again, add more tests to your program.

11




Chapter VII

Exercise 03: Now it’s weird!

I Exercise: 03
"

Now it’s weird!

Directory: ex03/

Files to Submit: Files from previous exercises + DiamondTrap.{h, hpp},
DiamondTrap.cpp
Forbidden: None

In this exercise, you will create a monster: a ClapTrap that’s half FragTrap, half Scav-
Trap. It will be named DiamondTrap, and it will inherit from both FragTrap AND
ScavTrap. This is so risky!

The DiamondTrap class will have a private attribute named name. This attribute must
have exactly the same variable name as in the ClapTrap base class (without referring to
the robot’s name).

To be clearer, here are two examples:

If ClapTrap’s variable is name, give the DiamondTrap’s variable the name name.
If ClapTrap’s variable is _name, give the DiamondTrap’s variable the name name.

Its attributes and member functions will be inherited from its parent classes:

e Name, which is passed as a parameter to a constructor
e ClapTrap: :name (parameter of the constructor + "'_clap_name" suffix)

e Hit points (FragTrap)

Energy points (ScavTrap)

Attack damage (FragTrap)

attack() (ScavTrap)

12




C++ - Module 03 Inheritance

In addition to the special functions from both parent classes, DiamondTrap will have
its own special ability:

void whoAmI();

This member function will display both its name and its ClapTrap name.

Of course, the ClapTrap instance of DiamondTrap will be created once, and only once.
Yes, there’s a trick.

Again, add more tests to your program.

Do you know the -Wshadow and -Wno-shadow compiler flags?

=

You can pass this module without completing exercise 03.

13




Chapter VIII

Submission and Peer-Evaluation

Submit your assignment in your Git repository as usual. Only the work within your repos-
itory will be evaluated during the defense. Don’t hesitate to double-check the names of
your folders and files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.

You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

14




	Introduction
	General rules
	AI Instructions
	Exercise 00: Aaaaand... OPEN!
	Exercise 01: Serena, my love!
	Exercise 02: Repetitive work
	Exercise 03: Now it's weird!
	Submission and Peer-Evaluation

