C+—+ - Module 04

Subtype Polymorphism, Abstract Classes, and

Summary:

Interfaces

This document contains the exercises for Module 04 of the C++ modules.

Version: 13.1

Contents

11

111

v

VI

VII

VIII

Introduction

General rules

AT Instructions

Exercise 00: Polymorphism

Exercise 01: T don’t want to set the world on fire
Exercise 02: Abstract class

Exercise 03: Interface & recap

Submission and Peer Evaluation

10

12

13

17

Chapter 1

Introduction

C++ is a general-purpose programming language created by Bjarne Stroustrup as an ex-
tension of the C programming language, or "C with Classes" (source: Wikipedia).

The goal of these modules is to introduce you to Object-Oriented Programming.
This will serve as the starting point of your C++ journey. Many languages are recom-
mended for learning OOP, but we’ve chosen C++ since it’s derived from your old friend
C. Because C++ is a complex language, and to keep things simple, your code will comply
with the C++98 standard.

We are aware that modern C++ differs significantly in many aspects. Therefore, if
you want to become a proficient C++ developer, it’s up to you to continue your journey
beyond the 42 Common Core!

https://en.wikipedia.org/wiki/C++

Chapter 11

General rules

Compiling
e Compile your code with c++ and the flags -Wall -Wextra -Werror

e Your code should still compile if you add the flag —std=c++98
Formatting and naming conventions

e The exercise directories will be named this way: ex00, ex01, ... , exn

e Name your files, classes, functions, member functions and attributes as required in
the guidelines.

o Write class names in UpperCamelCase format. Files containing class code will
always be named according to the class name. For instance:
ClassName.hpp/ClassName.h, ClassName.cpp, or ClassName.tpp. Then, if you
have a header file containing the definition of a class "BrickWall" standing for a
brick wall, its name will be BrickWall.hpp.

e Unless specified otherwise, every output message must end with a newline character
and be displayed to the standard output.

e Goodbye Norminette! No coding style is enforced in the C++ modules. You can
follow your favorite one. But keep in mind that code your peer evaluators can’t
understand is code they can’t grade. Do your best to write clean and readable code.

Allowed /Forbidden

You are not coding in C anymore. Time to C++! Therefore:

e You are allowed to use almost everything from the standard library. Thus, instead
of sticking to what you already know, it would be smart to use the C++-ish versions
of the C functions you are used to as much as possible.

e However, you can’t use any other external library. It means C++11 (and derived
forms) and Boost libraries are forbidden. The following functions are forbidden
too: *printf (), *alloc() and free(). If you use them, your grade will be 0 and
that’s it.

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

e Note that unless explicitly stated otherwise, the using namespace <ns_name> and
friend keywords are forbidden. Otherwise, your grade will be -42.

¢ You are allowed to use the STL only in Modules 08 and 09. That means:
no Containers (vector/list/map, and so forth) and no Algorithms (anything that

requires including the <algorithm> header) until then. Otherwise, your grade will
be -42.

A few design requirements

e Memory leakage occurs in C++ too. When you allocate memory (by using the new
keyword), you must avoid memory leaks.

e From Module 02 to Module 09, your classes must be designed in the Orthodox
Canonical Form, except when explicitly stated otherwise.

e Any function implementation put in a header file (except for function templates)
means 0 to the exercise.

e You should be able to use each of your headers independently from others. Thus,
they must include all the dependencies they need. However, you must avoid the
problem of double inclusion by adding include guards. Otherwise, your grade will
be 0.

Read me

e You can add some additional files if you need to (i.e., to split your code). As these
assignments are not verified by a program, feel free to do so as long as you turn in
the mandatory files.

e Sometimes, the guidelines of an exercise look short but the examples can show
requirements that are not explicitly written in the instructions.

e Read each module completely before starting! Really, do it.

e By Odin, by Thor! Use your brain!!!

Regarding the Makefile for C++ projects, the same rules as in C apply

(see the Norm chapter about the Makefile).

You will have to implement a lot of classes. This can seem tedious,

EE? unless you’re able to script your favorite text editor.

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

You are given a certain amount of freedom to complete the exercises.
However, follow the mandatory rules and don’t be lazy. You would

miss a lot of useful information! Do not hesitate to read about

theoretical concepts.

Chapter 111

Al Instructions

Context

This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using Al tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on Al — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

Main message

Build strong foundations without shortcuts.

Really develop tech & power skills.

Experience real peer-learning, start learning how to learn and solve new problems.
The learning journey is more important than the result.

Learn about the risks associated with Al, and develop effective control practices
and countermeasures to avoid common pitfalls.

Learner rules:

e You should apply reasoning to your assigned tasks, especially before turning to Al.

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

You should not ask for direct answers to the Al

You should learn about 42 global approach on Al.

Phase outcomes:

Within this foundational phase, you will get the following outcomes:

Get proper tech and coding foundations.

Know why and how AI can be dangerous during this phase.

Comments and example:

Yes, we know Al exists — and yes, it can solve your projects. But you're here to
learn, not to prove that Al has learned. Don’t waste your time (or ours) just to
demonstrate that Al can solve the given problem.

Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. Al gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

Keep in mind that during exams, Al is not available — no internet, no smartphones,
etc. You’ll quickly realise if you've relied too heavily on Al in your learning process.

Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

Yes, Al will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own Al software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

v Good practice:

I'm stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

X Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I'm stuck again. I fail.

Chapter 1V

Exercise 00: Polymorphism

l Exercise: 00

Polymorphism

Directory: ex00/
Files to Submit: Makefile, main.cpp, *.cpp, *.{h, hpp}
Forbidden: None

For every exercise, you have to provide the most complete tests you can.
Constructors and destructors of each class must display specific messages. Don’t use the
same message for all classes.

Start by implementing a simple base class called Animal. It has one protected
attribute:

e std::string type;

Implement a Dog class that inherits from Animal.
Implement a Cat class that inherits from Animal.

These two derived classes must set their type field depending on their name. Then,
the Dog’s type will be initialized to "Dog", and the Cat’s type will be initialized to "Cat".
The type of the Animal class can be left empty or set to the value of your choice.

Every animal must be able to use the member function:
makeSound ()
It will print an appropriate sound (cats don’t bark).

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

Running this code should print the specific sounds of the Dog and Cat classes, not
the Animal’s.

O

const Animal* meta = new Animal();
const Animal* j = new Dog(Q);
const Animal* i = new Cat();

std::cout << j->getType() << " " << std::endl;
std::cout << i->getType() << " " << std::endl;
i->makeSound(); //will output the cat sound!
j—>makeSound () ;

meta->makeSound () ;

return O;

To ensure you understood how it works, implement a WrongCat class that inherits
from a WrongAnimal class. If you replace the Animal and the Cat by the wrong ones
in the code above, the WrongCat should output the WrongAnimal sound.

Implement and turn in more tests than the ones given above.

Chapter V

Exercise 01: I don’t want to set the
world on fire

I Exercise: 01

I don’t want to set the world on fire

Directory: ex01/

Files to Submit: Files from previous exercise + *.cpp, *.{h, hpp}
Forbidden: None

Constructors and destructors of each class must display specific messages.

Implement a Brain class. It contains an array of 100 std: :string called ideas.
This way, Dog and Cat will have a private Brainx* attribute.
Upon construction, Dog and Cat will create their Brain using new Brain() ;
Upon destruction, Dog and Cat will delete their Brain.

In your main function, create and fill an array of Animal objects. Half of it will
be Dog objects and the other half will be Cat objects. At the end of your program
execution, loop over this array and delete every Animal. You must delete directly dogs
and cats as Animals. The appropriate destructors must be called in the expected order.

Don’t forget to check for memory leaks.

A copy of a Dog or a Cat mustn’t be shallow. Thus, you have to test that your copies
are deep copies!

10

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

O

const Animal* j = new Dog();
const Animalx* i new Cat();

delete j;//should not create a leak

delete i;

return 0O;

Implement and turn in more tests than the ones given above.

11

Chapter VI

Exercise 02: Abstract class

I Exercise: 02
"

Abstract class

Directory: ex02/

Files to Submit: Files from previous exercise + *.cpp, *.{h, hpp}
Forbidden: None

Creating Animal objects doesn’t make sense after all. It’s true, they make no sound!

To avoid any possible mistakes, the default Animal class should not be instantiable.
Fix the Animal class so that nobody can instantiate it. Everything should work as before.

If you want to, you can update the class name by adding an A prefix to Animal.

12

Chapter VII

Exercise 03: Interface & recap

l Exercise: 03

Interface & recap

Directory: ex03/

Files to Submit: Makefile, main.cpp, *.cpp, *.{h, hpp}
Forbidden: None

Interfaces don’t exist in C++98 (not even in C++20). However, pure abstract classes
are commonly called interfaces. Thus, in this last exercise, let’s try to implement inter-
faces in order to make sure you understand this module.

Complete the definition of the following AMateria class and implement the necessary
member functions.

class AMateria

{
protected:
[...]
public:
AMateria(std::string const & type);
[...]
std::string const & getType() const; //Returns the materia type
virtual AMateria* clone() const = O;
virtual void use(ICharacter& target);
¥;

13

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

Implement the concrete classes for Materias: Ice and Cure. Use their names in low-
ercase ("ice" for Ice, "cure" for Cure) to set their types. Of course, their member function
clone() will return a new instance of the same type (i.e., if you clone an Ice Materia,
you will get a new Ice Materia).

The use(ICharacter&) member function will display:

e Ice: "% shoots an ice bolt at <name> *'

e Cure: "* heals <name>’s wounds *'

<name> is the name of the Character passed as a parameter. Don’t print the angle
brackets (< and >).

While assigning a Materia to another, copying the type doesn’t make

% sense.

Write the concrete class Character which will implement the following interface:

class ICharacter

{
public:
virtual ~ICharacter() {}
virtual std::string const & getName() const = 0;
virtual void equip(AMateria* m) = O;
virtual void unequip(int idx) = 0;
virtual void use(int idx, ICharacter& target) = 0;
s

The Character possesses an inventory of 4 slots, which means at most 4 Materias.
The inventory is empty upon construction. They equip the Materias in the first empty
slot they find, in the following order: from slot 0 to slot 3. If they try to add a Materia to
a full inventory, or use/unequip a non-existent Materia, nothing should happen (but bugs
are still forbidden). The unequip() member function must NOT delete the Materia!

Handle the Materias your character leaves on the floor as you like.
Save the addresses before calling unequip(), or anything else, but

EE; don’t forget that you have to avoid memory leaks.

The use(int, ICharacter&) member function will have to use the Materia at the
slot[idx], and pass the target parameter to the AMateria: :use function.

14

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

Your character’s inventory will be able to support any type of

AMateria.

Your Character must have a constructor taking its name as a parameter. Any copy
(using copy constructor or copy assignment operator) of a Character must be deep.
During copy, the Materias of a Character must be deleted before the new ones are added
to their inventory. Of course, the Materias must be deleted when a Character is destroyed.

Write the concrete class MateriaSource which will implement the following interface:

class IMateriaSource

{
public:
virtual ~IMateriaSource() {}
virtual void learnMateria(AMateriax) = 0;
virtual AMateria* createMateria(std::string const & type) = O;
s

e learnMateria(AMateriax)
Copies the Materia passed as a parameter and stores it in memory so it can be cloned
later. Like the Character, the MateriaSource can know at most 4 Materias. They
are not necessarily unique.

e createMateria(std::string const &)
Returns a new Materia. The latter is a copy of the Materia previously learned by
the MateriaSource whose type equals the one passed as parameter. Returns 0 if
the type is unknown.

In a nutshell, your MateriaSource must be able to learn "templates" of Materias to
create them when needed. Then, you will be able to generate a new Materia using just
a string that identifies its type.

15

C++ - Module 04 Subtype Polymorphism, Abstract Classes, and Interfaces

Running this code:

O
IMateriaSource* src = new MateriaSource();
src->learnMateria(new Ice());

src->learnMateria(new Cure());

ICharacter* me = new Character("me");

AMateria* tmp;
tmp = src->createMateria("ice");
me->equip (tmp) ;
tmp = src->createMateria("cure");
me->equip (tmp) ;

ICharacter* bob = new Character("bob");

me->use (0, *bob);
me->use (1, *bob);

delete bob;
delete me;

delete src;

return O;

Should output:

$> clang++ -W -Wall -Werror *.cpp
$> ./a.out | cat -e

* shoots an ice bolt at bob *$§

* heals bob's wounds *$

As usual, implement and turn in more tests than the ones given above.

You can pass this module without doing exercise 03.

16

Chapter VIII

Submission and Peer Evaluation

Submit your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double-check the names of
your folders and files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.

You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

17

	Introduction
	General rules
	AI Instructions
	Exercise 00: Polymorphism
	Exercise 01: I don't want to set the world on fire
	Exercise 02: Abstract class
	Exercise 03: Interface & recap
	Submission and Peer Evaluation

