C+—+ - Module 05

Repetition and Exceptions

Summary:
This document contains the exercises of Module 05 from the C++ modules.

Version: 11.1




Contents

11

111

v

VI

VII

VIII

Introduction

General rules

AT Instructions

Exercise 00: Mommy, when I grow up, I want to be a bureaucrat!
Exercise 01: Form up, maggots!

Exercise 02: No, you need form 28B, not 28C...

Exercise 03: At least this beats coffee-making

Submission and Peer Evaluation

8

10

12

14

16




Chapter 1

Introduction

C++ is a general-purpose programming language created by Bjarne Stroustrup as an ex-
tension of the C programming language, or "C with Classes" (source: Wikipedia).

The goal of these modules is to introduce you to Object-Oriented Programming.
This will be the starting point of your C++ journey. Many languages are recommended
for learning OOP. We have chosen C++ since it is derived from your old friend, C.
Because this is a complex language, and in order to keep things simple, your code will
comply with the C+498 standard.

We are aware that modern C++ is significantly different in many aspects. So, if you
want to become a proficient C++ developer, it is up to you to go further after the 42
Common Core!



https://en.wikipedia.org/wiki/C++

Chapter 11

General rules

Compiling
e Compile your code with c++ and the flags -Wall -Wextra -Werror

e Your code should still compile if you add the flag —std=c++98
Formatting and naming conventions

e The exercise directories will be named this way: ex00, ex01, ... , exn

e Name your files, classes, functions, member functions and attributes as required in
the guidelines.

o Write class names in UpperCamelCase format. Files containing class code will
always be named according to the class name. For instance:
ClassName.hpp/ClassName.h, ClassName.cpp, or ClassName.tpp. Then, if you
have a header file containing the definition of a class "BrickWall" standing for a
brick wall, its name will be BrickWall.hpp.

e Unless specified otherwise, every output message must end with a newline character
and be displayed to the standard output.

e Goodbye Norminette! No coding style is enforced in the C++ modules. You can
follow your favorite one. But keep in mind that code your peer evaluators can’t
understand is code they can’t grade. Do your best to write clean and readable code.

Allowed /Forbidden

You are not coding in C anymore. Time to C++! Therefore:

e You are allowed to use almost everything from the standard library. Thus, instead
of sticking to what you already know, it would be smart to use the C++-ish versions
of the C functions you are used to as much as possible.

e However, you can’t use any other external library. It means C++11 (and derived
forms) and Boost libraries are forbidden. The following functions are forbidden
too: *printf (), *alloc() and free(). If you use them, your grade will be 0 and
that’s it.




C++ - Module 05 Repetition and Exceptions

e Note that unless explicitly stated otherwise, the using namespace <ns_name> and
friend keywords are forbidden. Otherwise, your grade will be -42.

¢ You are allowed to use the STL only in Modules 08 and 09. That means:
no Containers (vector/list/map, and so forth) and no Algorithms (anything that

requires including the <algorithm> header) until then. Otherwise, your grade will
be -42.

A few design requirements

e Memory leakage occurs in C++ too. When you allocate memory (by using the new
keyword), you must avoid memory leaks.

e From Module 02 to Module 09, your classes must be designed in the Orthodox
Canonical Form, except when explicitly stated otherwise.

e Any function implementation put in a header file (except for function templates)
means 0 to the exercise.

e You should be able to use each of your headers independently from others. Thus,
they must include all the dependencies they need. However, you must avoid the
problem of double inclusion by adding include guards. Otherwise, your grade will
be 0.

Read me

e You can add some additional files if you need to (i.e., to split your code). As these
assignments are not verified by a program, feel free to do so as long as you turn in
the mandatory files.

e Sometimes, the guidelines of an exercise look short but the examples can show
requirements that are not explicitly written in the instructions.

e Read each module completely before starting! Really, do it.

e By Odin, by Thor! Use your brain!!!

Regarding the Makefile for C++ projects, the same rules as in C apply

(see the Norm chapter about the Makefile).

You will have to implement a lot of classes. This can seem tedious,

EE? unless you’re able to script your favorite text editor.




C++ - Module 05 Repetition and Exceptions

You are given a certain amount of freedom to complete the exercises.
However, follow the mandatory rules and don’t be lazy. You would

miss a lot of useful information! Do not hesitate to read about

theoretical concepts.




Chapter 111

Al Instructions

Context

This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using Al tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on Al — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

Main message

Build strong foundations without shortcuts.

Really develop tech & power skills.

Experience real peer-learning, start learning how to learn and solve new problems.
The learning journey is more important than the result.

Learn about the risks associated with Al, and develop effective control practices
and countermeasures to avoid common pitfalls.

Learner rules:

e You should apply reasoning to your assigned tasks, especially before turning to Al.




C++ - Module 05 Repetition and Exceptions

You should not ask for direct answers to the Al

You should learn about 42 global approach on Al.

Phase outcomes:

Within this foundational phase, you will get the following outcomes:

Get proper tech and coding foundations.

Know why and how AI can be dangerous during this phase.

Comments and example:

Yes, we know Al exists — and yes, it can solve your projects. But you're here to
learn, not to prove that Al has learned. Don’t waste your time (or ours) just to
demonstrate that Al can solve the given problem.

Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. Al gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

Keep in mind that during exams, Al is not available — no internet, no smartphones,
etc. You’ll quickly realise if you've relied too heavily on Al in your learning process.

Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

Yes, Al will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own Al software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

v Good practice:

I'm stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

X Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I'm stuck again. I fail.




Chapter 1V

Exercise 00: Mommy, when I grow
up, I want to be a bureaucrat!

I Exercise: 00

Mommy, when I grow up, I want to be a bureaucrat!
Directory: ex00/

Files to Submit: Makefile, main.cpp, Bureaucrat.{h, hpp}, Bureaucrat.cpp
Forbidden: None

Please note that exception classes do not have to be designed in

Orthodox Canonical Form. However, every other class must follow it.

Let’s design an artificial nightmare of offices, corridors, forms, and waiting queues.
Sounds fun? No? Too bad.

First, start with the smallest cog in this vast bureaucratic machine: the Bureaucrat.
A Bureaucrat must have:

e A constant name.
e A grade that ranges from 1 (highest possible grade) to 150 (lowest possible grade).

Any attempt to instantiate a Bureaucrat with an invalid grade must throw an excep-
tion:

either a Bureaucrat: :GradeTooHighException or a Bureaucrat: :GradeTooLowException.




C++ - Module 05 Repetition and Exceptions

You will provide getters for both attributes: getName() and getGrade(). You must
also implement two member functions to increment or decrement the bureaucrat’s grade.
If the grade goes out of range, both functions must throw the same exceptions as the
constructor.

Remember, since grade 1 is the highest and 150 the lowest,

% incrementing a grade 3 should result in a grade 2 for the bureaucrat.

The thrown exceptions must be catchable using try and catch blocks:

try
{

/* do some stuff with bureaucrats */

}

catch (std::exception & e)

{
/* handle exception */

}

You must implement an overload of the insertion («) operator to print output in the
following format (without the angle brackets):

<name>, bureaucrat grade <grade>.

As usual, submit some tests to prove that everything works as expected.




Chapter V

Exercise 01: Form up, maggots!

l Exercise: 01

Form up, maggots!

Directory: ex01/

Files to Submit: Files from the previous exercise + Form.{h, hpp}, Form.cpp
Forbidden: None

Now that you have bureaucrats, let’s give them something to do. What better activity
could there be than filling out a stack of forms?

Let’s create a Form class. It has:

A constant name.

A boolean indicating whether it is signed (at construction, it is not).

A constant grade required to sign it.

A constant grade required to execute it.

All these attributes are private, not protected.
The grades of the Form follow the same rules as those of the Bureaucrat. Thus, the
following exceptions will be thrown if a form’s grade is out of bounds:

Form: :GradeTooHighException and Form: :GradeTooLowException.

As before, write getters for all attributes and overload the insertion («) operator to
print all the form’s information.

10




C++ - Module 05 Repetition and Exceptions

Also, add a beSigned () member function to the Form that takes a Bureaucrat as a
parameter. It changes the form’s status to signed if the bureaucrat’s grade is high enough
(greater than or equal to the required one). Remember, grade 1 is higher than grade 2.
If the grade is too low, throw a Form: : GradeTooLowException.

Then, add a signForm() member function in the Bureaucrat class. This function must
call Form: :beSigned () to attempt to sign the form. If the form is signed successfully, it
will print something like:

<bureaucrat> signed <form>

Otherwise, it will print something like:

<bureaucrat> couldn’t sign <form> because <reason>.

Implement and submit some tests to ensure everything works as expected.

11




Chapter VI

Exercise 02: No, you need form 28B,
not 28C...

I Exercise: 02

No, you need form 28B, not 28C...

Directory: ex02/

Files to Submit: Makefile, main.cpp, Bureaucrat.[{h, hpp},cppl, +

AForm. [{h, hpp},cpp]l, ShrubberyCreationForm. [{h, hppl},cppl, +
RobotomyRequestForm. [{h, hppl},cppl, PresidentialPardonForm. [{h, hpp},cpp]
Forbidden: None

Now that you have basic forms, it’s time to create a few more that actually do some-
thing.

In all cases, the base class Form must be an abstract class and should therefore be
renamed AForm. Keep in mind that the form’s attributes need to remain private and
that they belong to the base class.

Add the following concrete classes:

e ShrubberyCreationForm: Required grades: sign 145, exec 137
Creates a file <target>_shrubbery in the working directory and writes ASCII trees
inside it.

¢ RobotomyRequestForm: Required grades: sign 72, exec 45
Makes some drilling noises, then informs that <target> has been robotomized
successfully 50% of the time. Otherwise, it informs that the robotomy failed.

e PresidentialPardonForm: Required grades: sign 25, exec 5
Informs that <target> has been pardoned by Zaphod Beeblebrox.

All of them take only one parameter in their constructor: the target of the form. For
example, "home" if you want to plant shrubbery at home.

12




C++ - Module 05 Repetition and Exceptions

Now, add the execute (Bureaucrat const & executor) const member function to
the base form and implement a function to execute the form’s action in the concrete
classes. You must check that the form is signed and that the grade of the bureaucrat at-
tempting to execute the form is high enough. Otherwise, throw an appropriate exception.

Whether you check the requirements in every concrete class or in the base class (and
then call another function to execute the form) is up to you. However, one way is more

elegant than the other.

Lastly, add the executeForm(AForm const & form) const member function to the
Bureaucrat class. It must attempt to execute the form. If successful, print something like:

<bureaucrat> executed <form>
If not, print an explicit error message.

Implement and submit some tests to ensure everything works as expected.

13




Chapter VII

Exercise 03: At least this beats
coffee-making

I Exercise: 03

At least this beats coffee-making

Directory: ex03/

Files to Submit: Files from previous exercises + Intern.{h, hpp}, Intern.cpp
Forbidden: None

Since filling out forms all day would be too cruel for our bureaucrats, interns exist to
take on this tedious task. In this exercise, you must implement the Intern class. The
intern has no name, no grade, and no unique characteristics. The only thing bureaucrats
care about is that they do their job.

However, the intern has one key ability: the makeForm() function. This function
takes two strings as parameters: the first one represents the name of a form, and the
second one represents the target of the form. It returns a pointer to a AForm object
(corresponding to the form name passed as a parameter), with its target initialized to
the second parameter.

It should print something like:

Intern creates <form>

If the provided form name does not exist, print an explicit error message.

14




C++ - Module 05

Repetition and Exceptions

You must avoid unreadable and messy solutions, such as using an excessive if/el-
seif/else structure. This kind of approach will not be accepted during the evaluation
process. You're not in the Piscine (pool) anymore. As usual, you must test everything

to ensure it works as expected.

For example, the following code creates a RobotomyRequestForm targeted at

"Bender":

Intern someRandomIntern;
AForm* rrf;

rrf = someRandomIntern.makeForm("robotomy request", "Bender");

15




Chapter VIII

Submission and Peer Evaluation

Submit your assignment to your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Make sure to double-check the names of
your folders and files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behaviour change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific time
frame is defined as part of the evaluation.

You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

16




	Introduction
	General rules
	AI Instructions
	Exercise 00: Mommy, when I grow up, I want to be a bureaucrat!
	Exercise 01: Form up, maggots!
	Exercise 02: No, you need form 28B, not 28C...
	Exercise 03: At least this beats coffee-making
	Submission and Peer Evaluation

